

ANNUAL REPORT 2012

UIUC, August 16, 2012

Mold Flow with Argon Gas, EMBr and Evaluation using Nailboard Measurements

Kai Jin (Ph.D. Student) & Zhengjie Fan (Researcher, Baosteel)

Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

Acknowledgements

- Continuous Casting Consortium Members (ABB, ArcelorMittal, Baosteel, Tata Steel, Goodrich, Magnesita Refractories, Nucor Steel, Nippon Steel, Postech/ Posco, SSAB, ANSYS-Fluent)
- Baosteel (Prediction Measurement and Optimization of Mold Fluid Flow in Continuous Slab Casting with FC Mold at Baosteel, UIUC Research Project)
- Baosteel (plant data, including geometry, nailboard measurements, SVC measurements)
- ABB (EMBr magnetic field data)

Overall Objectives

- Improve understanding of fluid flow in the BaoSteel slab-casting mold, including the effect of EMBr;
- Develop an off-line CFD model to accurately model multiphase fluid flow with EMBr (prediction of flow pattern, surface velocity, etc.);
- Apply model to optimize EMBr operation in commercial slab casters, evaluate the quality of flow pattern and to improve nozzle design.

Metals Processing Simulation Lab

University of Illinois at Urbana-Champaign

Current Objectives

- Build RANS models of multiphase flow (Ar gas and molten steel) with EMBr in SEN and mold regions using FLUENT.
- Evaluate the differences between Eulerian-Eulerian model and Eulerian-Mixture model
- Investigate effect of EMBr settings on mold flow pattern and top surface velocity
- Compare predictions with results of nailboard and SVC experiments

4

Kai Jin

3

Kai Jin

Model Description

Metals Processing Simulation Lab

•

6

Kai Jin

Mesh Information

Mesh of ¹/₂ SEN + ¹/₂ Mold + ¹/₂ Slide Gate

inuous Casting Consortium

 Mapped hexahedron mesh, >220 blocks and ~1 million elements (1,000 million DOF)

Shell Thickness Calculation

Based on plant observation, shell thickness at the mold exit is around **19 mm**, with casting speed 1.2 m/min. So we can estimate the shell shape by using the equations below:

tinuous Casting Consortium

$$S = k\sqrt{t}$$

$$L_{noldexir} = 0.8 m$$

$$S_{moldexir} = 19 mm$$

$$V_{c} = 1.2m / \min = 0.02 m / s$$

$$t_{exit} = \frac{L_{moldexit}}{V_{c}} = \frac{0.8m}{0.02m / s} = 40 s$$

$$k = \frac{S_{moldexit}}{\sqrt{t_{exit}}} = \frac{19mm}{\sqrt{40s}} = 3.00 mm \cdot s^{-\frac{1}{2}}$$

$$3.00mm \cdot s^{-\frac{1}{2}} = 3.00mm \cdot s^{-\frac{1}{2}} \cdot 0.03937 \frac{inch}{mm} \cdot \left(\frac{1}{60} \frac{\min}{s}\right)^{-\frac{1}{2}}$$

$$= 0.91 inch \cdot \min^{-\frac{1}{2}}$$

Casting Conditions, Boundary Conditions and Material Properties

Casting Conditions	Value	Properties	Steel	Ar
Mold Thickness	240 mm	Density (kg/m ³)	7,000	0.5
Mold Width	1300 mm	Viscosity (kg/m-s)	0.0063	2.12e-5
Submergence Depth	160 mm	Electrical Conductivity (S/m)	714,000 [3]	1.0e-15 ^[4]
Port Downward Angle	15 deg.	Magnetic Permeability (h/m)	1.26*10 ^{-6 [3]}	4π*10 ⁻⁷
Casting Speed	1.2 m/min			

Location	Boundary Condition				
Inlet	V = 1.42 m/s				
Outlet	Pressure 184kpa				
Symmetry Plane	Symmetry				
Top Surface (Meniscus)	No-slip wall				
NF and WF	No-slip wall; with Steel Mass & Momentum sink				
Other Places	No-slip wall				
University of Illinois at Urbana-Champaign	Metals Processing Simulation Lab Kai Jin 13				

Simulation Overview

Simulation No.	Slide Gate	Ar Gas Conditions	EMBr Conditions (Amp)	Multiphase model	
S1a					
S1b	70%*				
S2a	70%		T400 B600***		
S2b	70%		T000 B600		
S3a	70%	3mm, 10%V**		Eulerian-Eulerian	
S3b	70%	3mm, 10%V		Eulerian-Mixture	
S4a	70%	3mm, 10%V	T400 B600	Eulerian-Mixture	

Ar Flow Rate = Ar Injection Rate × Expension Factor × % Enter SEN = $15L/\min \times 4 \times 70\% = 0.042m^3/\min \times 10^{-3}$

Steel Flow Rate = CastingSpeed $\times V_c \times MoldWidth = 1.2m / \min \times 0.24m \times 1.3m \approx 0.37m / \min$

Ar Volume Fraction = $\frac{Ar \ Flow \ Rate}{Ar \ Flow \ Rate + Steel \ Flow \ Rate} \approx 0.10$

•

NOTE:

* 70% Open

** Bubble Diameter is 3mm, Ar volume fraction 10%.

*** Top coil current 400Amp, bottom coil current 600Amp

14

EMBr Effect on Single-Phase Flow - S2b Result

Single-Phase Flow Simulation Conclusions

- Slide gate can generate asymmetric flow in nozzle and affects symmetry of flow through port, but little effect on surface cross-flow with singlephase flow;
- Double roll pattern is observed in all single-phase simulations: EMBr has little effect on flow pattern; the large asymmetric behavior observed in the nailboard experiments is not due to EMBr;
- EMBr can significantly reduce flow speed in mold region: maximum surface velocity drops from ~0.35 m/s to ~0.18 m/s comparing S1b (no EMBr=T0 B0) and S2a (T400 B600), (constant 1.2m/min);
- No simulation matches with experiments data, the surface velocity direction is GREATLY DIFERENT from plant measurement;

asting

S3a Velocity at Middle Plane and 10 mm belwo top surface

Steel Velocity Magnitude Contour

Middle Plane

Steel Velocity Vector

- Huge cross flow captured just below top surface;
- Flow pattern changed (both in the middle plane and the region beneath top surface.

Steel

Velocity

Metals Processing Simulation Lab

• 26

Compare Velocity Components

Middle Plane Streamline

Eulerian Model

tinuous Casting

Insortium

Mixture Model

Compare Velocity Components Mixture Model (Surface 1cm below TS.)

S4a Results - Effect of EMBr

S4a Results – Compare Velocity Components nsortium

- In two-phase flow, adding EMBr may increase top surface velocity V_x components, and the direction is toward NF;
- EMBr has little affect on decreasing cross flow;

asting

Multi-phase Simulation Conclusions

- Eulerian-mixture and Eulerian- Eulerian multiphase models are compared with nailboard experiments, and the 2 different models have some differences but generally have the same trends. More nailboard measurements are needed to confirm the real behavior;
- Ar gas injection has HUGE effect and can greatly change the flow pattern in mold region, also generate cross flow on top surface;
- Huge asymmetry problem is more important than EMBr effect; EMBr cannot help with solving asymmetric flow problem;
- EMBr may increase the velocity magnitude near the meniscus when there is Ar injection;
- Minimize Ar gas injection prior to optimizing flow with EMBr. University of Illinois at Urbana-Champaign · Metals Processing Simulation Lab · Kai Jin · 41

Optimization of EMBr in Single Phase Flow

Zhengjie Fan (Researcher, Baosteel)

Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

Surface Velocity at ¹/₄ the mold (m/s) for Different Casting Speed and EMBr settings

Velocity magnitude at 10 mm deep (m/s)

CC condition	1.3 m/min	1.5 m/min	1.7 m/min	1.9 m/min
EMBR OFF	0.220	0.273	0.382	0.504
U200A B200A	0.131	0.165	0.178	0.205
U400A B400A	0.115	0.148	0.155	0.176
U600A B600A	0.107	0.137	0.143	0.165
U850A B850A	0.097	0.118	0.123	0.143

Zhengjie Fan

Conclusions

- Single-phase, Eulerian-mixture, and Eulerian- Eulerian multiphase models are compared with nailboard experiments;
- In single-phase flow, slide gate can cause asymmetric flow through port but cannot generate large asymmetric flow in top surface;
- EMBr has little effect on asymmetry in single phase flow;
- In single-phase flow, adding EMBr can decrease surface velocity, but it's not true in multiphase flow; surface velocity may be increased by adding EMBr;
- The 2 different multiphase models have some differences but generally same trends. More nailboard measurements are needed to confirm the real behavior;
- Huge asymmetry problem is more important than EMBr effect; Ar gas injection is the major cause of asymmetric flow in near top surface;
- Minimize Ar gas injection prior to optimizing flow with EMBr.

48

References

[1] Ansys, Inc, FLUENT Manual.

[2] Rui Liu, GroupMeeting Sep.26, 2011, R. Liu Shell and Particle.

[3] Yu Haiqi, Wang Baofeng, Li Huiqin, Li Jianchao, *Influence of electromagnetic brake on flow field of liquid steel in the slab continuous casting mold*, Journal of Materials Processing Technology, Volume 202, Issues 1–3

[4] S. D. Pawar, P. Murugavel, D. M. Lal, *Effect of relative humidity and sea level pressure on electrical conductivity of air over Indian Ocean*, Journal of Geophysical Research, vol. 114, D02205, 8 PP., 2009

THANK YOU

University of Illinois at Urbana-Champaign

Metals Processing Simulation Lab

Kai Jin

49